Skip to main content

Stratigraphic Base Level Revisited in Deep-water Settings

It has been 100 years since Barrell (1917) solidified the base level concept, which is widely used in sequence stratigraphy. The concept was first introduced by Powel (1875). It is still broadly used in non-marine, near shore and deep-water settings. The problem arrives when the base level concept is applied in deep-water settings. Most of us will consider the sea level/wave base as a base level. However, it is simply not! The magnitude at which sea level or wave base varies is much smaller than the changes that we observe on the modern or ancient sea floor. Recalling, below the base level deposition happens and above it erosion is possible. This original definition gets violated when sea level is chosen as a base level proxy. As annotated in the figure below, the sea level or wave base can not be considered as a proxy for the base level since erosion and deposition happen below this level. To solve such a conceptual problem, we always need to place the base level close to the sea floor topography depending on its gradient much similar to the way we define the base level in a non-marine setting. Obviously, the ultimate reference can be the sea level but the instantaneous variations on the Earth’s surface are controlled by a temporary base level. This was the beginning of our synthesis to compile a document that not only describes the concept but also provides an optimum solution to the problem. The preservation/removal of geologic timelines and time units and their reconstruction based on flattening theory is another thing to look at within the context of the base level. It is the base level oscillation that results in creation/destruction of an accommodation space, which allows the erosional and depositional profiles to re-adjust & produce geologic timelines or time-units. To read more, follow this link.

(free copy valid till Sep 15, 2017)

You can also request for a private copy via my ResearchGate page.



Image taken from Qayyum et al., 2017, The Wheeler diagram, flattening theory, and time, Marine and Petroleum Geology, 86, 1417-1430.


Comments

Popular posts from this blog

Maximum Flooding Surface

Maximum Flooding Surface (MFS) By F. Qayyum This is a short post about the MFS that is considered as an easy to identify on outcrops and well data because of some reasons. This post would covers the fundamentals of placing a MFS in a stratigraphic unit and how to avoid pitfalls in its interpretation. Definition It is a surface that marks the end of shoreline transgression towards land or coastal plain. It suggests a base level rise and subsequent marine transgression onto the shelf or coastal plain. Recognition It can be treated as a downlap surface because overlying strata may prograde and downlap on it. This is a typical case for a normal regressive deltaic progradation or simply siliciclastic system reaching the shoreface and basin. The overlying system could either be a HST or LST depending on the location. On the well logs, it is marked by a deepening up-ward GR trend. This means that one is going to mostly define a massive shale as a MFS marker at a shelf lo...

Maximum Regressive Surface (MRS)

Maximum Regressive Surface (MRS) Other Synonyms: Transgressive Surface (TS) This is a short post about the MRS that is considered as an easy to identify on outcrops and well data because of some reasons. This post would covers the fundamentals of placing a MRS in a stratigraphic unit and how to avoid pitfalls in its interpretation. Definition It is a surface that marks the start of shoreline regression towards basin. It suggests a base level fall and subsequent marine regression. Recognition In the outcrop and wireline logs it is mostly recognized as a surface separating a coarsening upward succession from the overlying fining upward succession. This suggests that the underlying succession is a regressive unit and the overlying sequence is a transgressive unit. In the above seismic data, you may notice a distinct MRS separating the underlying regressive unit (RST) from the overlying transgressive unit (TST). This surface forms a healing phase wedge above that i...